Design and implement a data structure for Least Frequently Used (LFU) cache. It should support the following operations: get and set.
get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1. set(key, value) - Set or insert the value if the key is not already present. When the cache reaches its capacity, it should invalidate the least frequently used item before inserting a new item. For the purpose of this problem, when there is a tie (i.e., two or more keys that have the same frequency), the least recently used key would be evicted.
Follow up: Could you do both operations in O(1) time complexity?
Example:
LFUCache cache = new LFUCache( 2 /* capacity */ );
cache.set(1, 1);
cache.set(2, 2);
cache.get(1); // returns 1
cache.set(3, 3); // evicts key 2
cache.get(2); // returns -1 (not found)
cache.get(3); // returns 3.
cache.set(4, 4); // evicts key 1.
cache.get(1); // returns -1 (not found)
cache.get(3); // returns 3
cache.get(4); // returns 4
Solution
public class LFUCache {
public class Node {
public Set<Integer> keys;
public Node prev;
public Node next;
public int freq;
public Node(Node prev, Node next, int freq) {
this.prev = prev;
this.next = next;
this.freq = freq;
keys = new LinkedHashSet<Integer>();
}
}
int cap = 0;
int usage = 0;
Map<Integer, Integer> content = new HashMap<Integer, Integer>();
Map<Integer, Node> place = new HashMap<Integer, Node>();
Node head = new Node(null, null, 0);
Node tail = new Node(null, null, 0);
public LFUCache(int capacity) {
cap = capacity;
head.next = tail;
tail.prev = head;
}
public int get(int key) {
if(cap == 0) return -1;
if(content.containsKey(key)) {
increaseFreq(key);
return content.get(key);
} else {
return -1;
}
}
public void set(int key, int value) {
if(cap == 0) return;
if(content.containsKey(key)) {
increaseFreq(key);
content.put(key, value);
} else {
// check usage
if(usage == cap) {
removeLeastFrequentKey();
}
createNewKey(key, value);
}
}
public void increaseFreq(int key) {
Node mynode = place.get(key);
if(mynode.next.freq != mynode.freq + 1) insertAfter(mynode);
Node nextNode = mynode.next;
nextNode.keys.add(key);
mynode.keys.remove(key);
if(mynode.keys.size() == 0) deleteNode(mynode);
place.put(key, nextNode);
}
public void removeLeastFrequentKey() {
usage--;
int removed = head.next.keys.iterator().next();
place.remove(removed);
content.remove(removed);
head.next.keys.remove(removed);
if(head.next.keys.size() == 0) deleteNode(head.next);
}
public void createNewKey(int key, int value) {
usage++;
content.put(key, value);
if(head.next.freq != 1) insertAfter(head);
head.next.keys.add(key);
place.put(key, head.next);
}
public Node insertAfter(Node node) {
Node mid = new Node(node, node.next, node.freq + 1);
node.next.prev = mid;
node.next = mid;
return mid;
}
public void deleteNode(Node node) {
Node prev = node.prev;
Node next = node.next;
prev.next = next;
next.prev = prev;
}
}
/**
* Your LFUCache object will be instantiated and called as such:
* LFUCache obj = new LFUCache(capacity);
* int param_1 = obj.get(key);
* obj.set(key,value);
*/