For a undirected graph with tree characteristics, we can choose any node as the root. The result graph is then a rooted tree. Among all possible rooted trees, those with minimum height are called minimum height trees (MHTs). Given such a graph, write a function to find all the MHTs and return a list of their root labels.
Format The graph contains n nodes which are labeled from 0 to n - 1. You will be given the number n and a list of undirected edges (each edge is a pair of labels).
You can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.
Example 1:
Given n = 4, edges = [[1, 0], [1, 2], [1, 3]]
0
|
1
/ \
2 3
return [1]
Example 2:
Given n = 6, edges = [[0, 3], [1, 3], [2, 3], [4, 3], [5, 4]]
0 1 2
\ | /
3
|
4
|
5
return [3, 4]
Hint:
How many MHTs can a graph have at most? Note:
(1) According to the definition of tree on Wikipedia: “a tree is an undirected graph in which any two vertices are connected by exactly one path. In other words, any connected graph without simple cycles is a tree.”
(2) The height of a rooted tree is the number of edges on the longest downward path between the root and a leaf.
Solution
public class Solution {
public List<Integer> findMinHeightTrees(int n, int[][] edges) {
if(n == 0 || edges == null) return new ArrayList<Integer>();
if(n == 1) return Arrays.asList( new Integer[]{0} );
Map<Integer, List<Integer>> edge = new HashMap<Integer, List<Integer>>();
for(int i = 0; i < edges.length; i++) {
int from = edges[i][0];
int to = edges[i][1];
if(edge.get(from) == null) edge.put(from, new ArrayList<Integer>());
if(edge.get(to) == null) edge.put(to, new ArrayList<Integer>());
edge.get(from).add(to);
edge.get(to).add(from);
}
List<Integer> path1 = dfs(edge, 0);
List<Integer> path2 = dfs(edge, path1.get(path1.size()-1));
// get the middle one
List<Integer> ans = new ArrayList<Integer>();
if(path2.size() % 2 == 0) {
ans.add( path2.get(path2.size()/2) );
ans.add( path2.get(path2.size()/2-1));
} else {
ans.add( path2.get(path2.size()/2) );
}
return ans;
}
public List<Integer> dfs(Map<Integer, List<Integer>> edge, int from) {
Set<Integer> visited = new HashSet<Integer>();
List<Integer> longest = new ArrayList<Integer>();
List<Integer> path = new ArrayList<Integer>();
path.add(from);
visited.add(from);
while(path.size() != 0) {
int cur = path.get(path.size()-1);
boolean block = true;
// if no way to go, pop out
for(Integer to: edge.get(cur)) {
if(visited.add(to)) {
path.add(to);
block = false;
break;
}
}
if(block) {
if(path.size() > longest.size()) longest = new ArrayList<Integer>(path);
path.remove(path.size()-1);
}
}
return longest;
}
}