Given a set of distinct positive integers, find the largest subset such that every pair (Si, Sj) of elements in this subset satisfies: Si % Sj = 0 or Sj % Si = 0.
If there are multiple solutions, return any subset is fine.
Example 1:
nums: [1,2,3]
Result: [1,2] (of course, [1,3] will also be ok) Example 2:
nums: [1,2,4,8]
Result: [1,2,4,8]
Solution
public class Solution {
public List<Integer> largestDivisibleSubset(int[] nums) {
if(nums == null || nums.length == 0) return new ArrayList<Integer>();
Arrays.sort(nums);
int dp[] = new int[nums.length];
int prev[] = new int[nums.length];
Arrays.fill(prev, -1);
int max = 0;
int idx = 0;
for(int i = 0; i < nums.length; i++) {
for(int j = 0; j < i; j++) {
if(nums[i] % nums[j] == 0) {
if(dp[j]+1 > dp[i]) {
dp[i] = dp[j]+1;
prev[i] = j;
}
}
}
if(dp[i] > max) {
max = dp[i];
idx = i;
}
}
List<Integer> ans = new ArrayList<Integer>();
while(idx != -1) {
ans.add(nums[idx]);
idx = prev[idx];
}
return ans;
}
}