Given a binary search tree, write a function kthSmallest to find the kth smallest element in it.
Note: You may assume k is always valid, 1 ≤ k ≤ BST's total elements.
Follow up: What if the BST is modified (insert/delete operations) often and you need to find the kth smallest frequently? How would you optimize the kthSmallest routine?
Hint:
Try to utilize the property of a BST. What if you could modify the BST node's structure? The optimal runtime complexity is O(height of BST).
Solution
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
int ans = 0;
public int kthSmallest(TreeNode root, int k) {
// how to do this recursively?
search(root, k);
return ans;
}
public int search(TreeNode root, int k) {
if(root == null) return k;
if(root.left != null) {
k = search(root.left, k);
if(k <= 0) return k;
}
if(--k == 0) {
ans = root.val;
return -1;
}
if(root.right != null) {
k = search(root.right, k);
if(k <= 0) return k;
}
return k;
}
}